Scientifica PatchStar Motorised Micromanipulator

Scientifica PatchStar Micromanipulator

The most versatile motorised manipulator for electrophysiological studies. Designed with leading physiologists, the PatchStar is also perfect for microinjection and other demanding positioning requirements.



Less than 1 µm drift over 2 hours for long-term experiments

Super-smooth movement

20 nm resolution for absolute positioning


Easily switchable between left and right-handed configurations


Electrically quiet for recording of extremely small signals without having to switch off the motors

Fast & simple

Quickly move your pipette with adjustable speed settings and easily change pipettes thanks to the sliding bracket and rotational stages

PatchStar 360° view

Control options

Operate via our ergonomically designed remote control options or through our specially designed LinLab software.


Download the PatchStar Micromanipulator brochure for more information.

Design & Specifications

3 orthogonal and 4th virtual
20 mm (in X, Y and Z axes)
Crossed roller
Minimum speed
Minimum speed
1 µm per second
Maximum speed
Maximum speed
4 mm per second
Electronic resolution
Electronic resolution
20 nm
Memory positions
Memory positions
50 on control device (unlimited via LinLab)
LinLab for Windows


“We selected PatchStar micromanipulators for the combination of high precision, stability and competitive price.”
Dr Roman Gorbachev, The University of Manchester
"The success rate of my outside-out patch clamp recordings significantly increased to over 90% or even 100%.”
Dr Can Peng, University of Florida
“The PatchStar is the new standard. After 6-months of use, we are still truly impressed by the stability.”
Dr Christophe Bernard, Aix Marseille Université
"Since discovering the PatchStar, we have upgraded all of our nanoindentation setups to include it. The long travel range and high stability of the manipulator help us to reliably perform indentation measurements on a wide variety of samples without needing to make adjustments to the setup. This allows us to spend more time collecting data."
Erik Paardekam, VU University Amsterdam
"I started using the Patchstar system 10 years ago to perform in vivo dual recordings in Drosophila. Stability, versatility, and reliability are features we can’t compromise on; the Patchstar manipulators have certainly delivered. They now feature in all of the lab's electrophysiology rigs."
Dr. Diogo Pimentel, Centre for Neural Circuits and Behaviour, University of Oxford
"I would say that it is an incredibly stable and silent micro-manipulator which allows long-lasting recordings without mechanical drift or electrical noise."
Dr. Julien Dupuis, University of Bordeaux
"They are incredibly precise and easy to use, really user friendly"
Dr. Andrew Boyce, University of Calgary
"We use 4 PatchStar manipulators to perform quadruple recordings of neurons in brain slices and have been very pleased with their stability and ease of use over the last three years"
User at ICL

PatchStar Micromanipulator Schematic with Measurements

PatchStar Micromanipulator Schematic with Measurements
PatchStar Micromanipulator Schematic Side Profile

PatchStar Micromanipulator Schematic Side Profile

PatchStar Micromanipulator Schematic Birdseye View

PatchStar Micromanipulator Schematic Birdseye View

Alfonsa, H., Lakey, J., Lightowlers, R., & Trevelyan, A. (2016). Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons. Nature Communications, 7, 13495.

Alfonsa, H., Merricks, E M., Codadu, N K., Cunningham, M., Deisseroth, K., Racca, C., & Trevelyan, A J., (2015). The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity. The Journal of Neuroscience, 35(20), 7715-7726.

Antonovaite, N., Beekmans, S V., Hol, E M., Wadman, W J., & Iannuzzi, D. (2018). Structure-stiffness relation of live mouse brain tissue determined by depth-controlled indentation mapping. Biological Physics.

Antonovaite, N., Beekmans, S V., Hol, E M., Wadman, W J., & Iannuzzi, D. (2018). Regional variations in stiffness in live mouse brain tissue determined by depth-controlled indentation mapping. Scientific Reports. 12517(8).

Arends, F., Sellner, S., Seifert, P., Gerland, U., Rehberg, M., & Lieleg, O. (2015). A microfluidics approach to study the accumulation of molecules at basal lamina interfaces. Lab Chip, 15(16), 3326-3334.

Aydin, C., Couto, J., Giugliano, M., Farrow, K., & Bonin, V. (2018). Locomotion modulates specific functional cell types in the mouse visual thalamus. Nature Communications, 9(4882).

Baheiraei, N., Gharibi, R., Yeganeh, H., Miragoli, M., Salvarani, N., Di Pasquale, E., & Condorelli, G. (2016). Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part II: HL-1 cytocompatibility and electrical characterizations. Journal Of Biomedical Materials Research Part A, 104(6), 1398-1407.

Bitzenhofer, S., Sieben, K., Siebert, K., Spehr, M., & Hanganu-Opatz, I. (2015). Oscillatory Activity in Developing Prefrontal Networks Results from Theta-Gamma-Modulated Synaptic Inputs. Cell Reports, 11(3), 486-497.

Bolding, K., & Franks, K. (2017). Complementary codes for odor identity and intensity in olfactory cortex. Elife, 6.

Brickley, S., Ye, Z., Yu, X., Houston, C., Aboukhalil, Z., Franks, N., & Wisden, W. (2017). Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different γ Subunits. Frontiers In Cellular Neuroscience, 11.

Chen, X., Bonfiglio, R., Banerji, S., Jackson, D., Salustri, A., & Richter, R. (2016). Micromechanical Analysis of the Hyaluronan-Rich Matrix Surrounding the Oocyte Reveals a Uniquely Soft and Elastic Composition. Biophysical Journal, 110(12), 2779-2789.

Climent, M., Quintavalle, M., Miragoli, M., Chen, J., Condorelli, G., & Ellis, L. (2015). TGFβ Triggers miR-143/145 Transfer From Smooth Muscle Cells to Endothelial Cells, Thereby Modulating Vessel Stabilization. Circulation Research, 116, 1753-1764.

de Britto, A., & Moraes, D. (2017). Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats. The Journal Of Physiology, 595(6), 2043-2064.

Diez, R., Richardson, M J E., & Wall, MJ. (2017). Reducing Extracellular Ca2+ Induces Adenosine Release via Equilibrative Nucleoside Transporters to Provide Negative Feedback Control of Activity in the Hippocampus. Frontiers in Neural Circuits.

Donghyun Hwang, Yong Seok Ihn, Seonhong Hwang, Sang-Rok Oh, & Keehoon Kim. (2016). A preliminary study on the method for stable and reliable implantation of neural interfaces into peripheral nervous system. 2016 6Th IEEE International Conference On Biomedical Robotics And Biomechatronics (Biorob).

Du, Y., Ma, B., Kiyoshi, C., Alford, C., Wang, W., & Zhou, M. (2015). Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes. Journal Of Neurophysiology, 113(10), 3744-3750.

Edwards, I., Lall, V., Paton, J., Yanagawa, Y., Szabo, G., Deuchars, S., & Deuchars, J. (2014). Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits. Brain Structure And Function, 220(3), 1421-1436.

Fazeli, W., Zappettini, S., Marguet, S., Grendel, J., Esclapez, M., Bernard, C., Isbrandt, D. (2017). Early-life exposure to caffeine affects the construction and activity of cortical networks in mice. Experimental Neurology, 295, 88-103.

Funayama, K., Minamisawa, G., Matsumoto, N., Ban, H., Chan, A., & Matsuki, N. et al. (2015). Neocortical Rebound Depolarization Enhances Visual Perception. PLOS Biology, 13(8), e1002231.

Ghatak, S., Banerjee, A., & Sikdar, S. (2015). Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. The Journal Of Physiology, 594(1), 59-81.

Grimm, C., Vierock, J., Hegemann, P., Wietek, J. (2017). Whole-cell Patch-clamp Recordings for Electrophysiological Determination of Ion Selectivity in Channelrhodopsins. J. Vis. Exp. (123), e55497.

Hurk, M., Erwin, J., Yeo, G., Gage, F., Bardy, C. (2018). Patch-Seq Protocol to Analyze the Electrophysiology, Morphology and Transcriptome of Whole Single Neurons Derived From Human Pluripotent Stem Cells. Front. Mol. Neurosci.

Koizumi, H., John, T T., Chia, J X., Tariq, M F., Phillips, R S., Mosher, B., Chen, Y., Thompson, R., Zhang, R., Koshiya, N., & Smith, J C. (2018). Transient Receptor Potential Channels TRPM4 and TRPC3 Critically Contribute to Respiratory Motor Pattern Formation but Not Rhythmogenesis in Rodent Brainstem Circuits. eNeuro.

Lee, S., Geiller, T., Jung, A., Nakajima, R., Song, Y., Baker, B. (2017) Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition. Nature, (7), 8286.

Leo-Macias, A., Agullo-Pascual, E., Sanchez-Alonso, J., Keegan, S., Lin, X., & Arcos, T. et al. (2016). Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nature Communications, 7, 10342.

Letellier, M., Szíber, Z., Chamma, I., Saphy, C., Papasideri, I., Tessier, B., Sainlos, M., Czöndör, K., Thoumine, O. (2018). A unique intracellular tyrosine in neuroligin-1 regulates AMPA receptor recruitment during synapse differentiation and potentiation. Nature, 9, 3979.

Li, J M., & Sheets, P L. (2018). The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. The Journal of Physiology, 596(24), 6289 - 6305. https://physoc.onlinelibrary.w...

Lim, B., Knowland, D., Lilascharoen, V., Pacia, C., Shin, S., Wang, E. (2017). Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression. Cell, 170(2), 284-297.

Linaro, D., Couto, J., & Giugliano, M. (2015). Real-time Electrophysiology: Using Closed-loop Protocols to Probe Neuronal Dynamics and Beyond. Journal Of Visualized Experiments, (100).

Ma, B., Xu, G., Wang, W., Enyeart, J., & Zhou, M. (2014). Dual patch voltage clamp study of low membrane resistance astrocytes in situ. Molecular Brain, 7(1), 18.

Mahmud, M., Cecchetto, C., & Vassanelli, S. (2016). An Automated Method for Characterization of Evoked Single-Trial Local Field Potentials Recorded from Rat Barrel Cortex Under Mechanical Whisker Stimulation. Cognitive Computation, 8(5), 935-945.

Maksaev, G., & Haswell, E. (2015). Expressing and Characterizing Mechanosensitive Channels in Xenopus Oocytes. Methods In Molecular Biology, 151-169.

Malik, R., & Ferguson, A. (2016). Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat. Brain Research, 1633, 1-9.

Meunier, C., Roberts, J., McCarty, G., & Sombers, L. (2017). Background Signal as an in Situ Predictor of Dopamine Oxidation Potential: Improving Interpretation of Fast-Scan Cyclic Voltammetry Data. ACS Chemical Neuroscience, 8(2), 411-419.

Nekolla, K., Kick, K., Sellner, S., Mildner, K., Zahler, S., & Zeuschner, D. et al. (2016). Influence of Surface Modifications on the Spatiotemporal Microdistribution of Quantum Dots In Vivo. Small, 12(19), 2641-2651.

Neto, J., Lopes, G., Frazão, J., Nogueira, J., Lacerda, P., & Baião, P. et al. (2016). Validating silicon polytrodes with paired juxtacellular recordings: method and dataset. Journal Of Neurophysiology, 116(2), 892-903.

Nugroho, R W N., Harjumaki, R., Zhang, X., Lou, Y R., Yliperttula, M., Valle-Delgado, J J., & Osterberg, M. (2019). Quantifying the interactions between biomimetic biomaterials – collagen I, collagen IV, laminin 521 and cellulose nanofibrils – by colloidal probe microscopy. Elsevier, 173, 571 - 580.!

Peterson, P., Kalda, M., & Vendelin, M. (2012). Real-time determination of sarcomere length of a single cardiomyocyte during contraction. American Journal Of Physiology - Cell Physiology, 304(6), C519-C531.

Ping, X., & Jin, X. (2016). Transition from Initial Hypoactivity to Hyperactivity in Cortical Layer V Pyramidal Neurons after Traumatic Brain InjuryIn Vivo. Journal Of Neurotrauma, 33(4), 354-361.

Randall, A., Manso, Y., Holland, P., Kitamura, A., Szymkowiak, S., Duncombe, J., Hennessy, E., Searcy, J., Marangoni, M. (2018). Minocycline reduces microgliosis and improves subcortical white matter function in a model of cerebral vascular disease. Glia, 66(1), 34-36.

Rehberg, M., Nekolla, K., Sellner, S., Praetner, M., Mildner, K., Zeuschner, D., & Krombach, F. (2016). Intercellular Transport of Nanomaterials is Mediated by Membrane Nanotubes In Vivo. Small, 12(14), 1882-1890.

Roberts, A., Conte, D., Hull, M., Merrison-Hort, R., al Azad, A., & Buhl, E. et al. (2014). Can Simple Rules Control Development of a Pioneer Vertebrate Neuronal Network Generating Behavior?. Journal Of Neuroscience, 34(2), 608-621.

Sellner, S., Kocabey, S., Nekolla, K., Krombach, F., Liedl, T., & Rehberg, M. (2015). DNA nanotubes as intracellular delivery vehicles in vivo. Biomaterials, 53, 453-463.

Shevchuk, A., Tokar, S., Gopal, S., Sanchez-Alonso, J., Tarasov, A., & Vélez-Ortega, A. et al. (2016). Angular Approach Scanning Ion Conductance Microscopy. Biophysical Journal, 110(10), 2252-2265.

Stern, M., Bolding, K A., Abbott, L F., & Franks, K M. (2018). A transformation from temporal to ensemble coding in a model of piriform cortex. eLIFE.

Wong, C., & Mills, J. (2016). Cleavage-stage embryo rotation tracking and automated micropipette control: Towards automated single cell manipulation. 2016 IEEE/RSJ International Conference On Intelligent Robots And Systems (IROS).

Ye, Z., McGee, T., Houston, C., & Brickley, S. (2013). The contribution of δ subunit-containing GABAA receptors to phasic and tonic conductance changes in cerebellum, thalamus and neocortex. Frontiers In Neural Circuits, 7.

York, N., Halbach, P., Chiu, M., Bird,I., Pillers,D., Pattnaik, B. (2017). Oxytocin (OXT)-stimulated inhibition of Kir7.1 activity is through PIP2-dependent Ca2 + response of the oxytocin receptor in the retinal pigment epithelium in vitro. Cellular Signalling, 37, 93-102.

Zheng, L., Yu, M., Lin, R. et al. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nat Commun 11, 3012 (2020).


Shallow Bracket (PS-7500)

Allows low, shallow angle positioning of the headstage or probe (recommended if mounting on SlicePlatform, MTP or MMTP)

PatchStar with shallow bracket (PS-7500) PatchStar Micromanipulator with shallow bracket (PS-7500)

Steep Bracket (PS-7550)

Allows steep angles or additional height reach for the headstage or probe (recommended if mounting on MMBP)

PatchStar with steep Bracket (PS-7550) PatchStar Micromanipulator with steep Bracket (PS-7550)

Low Profile L Bracket (PS-7800)

Allows the position of the Z axis module to be changed, lowering the height of the PatchStar for rigs with height restrictions

PatchStar with low profile L Bracket PatchStar Micromanipulator with low profile L Bracket

Dovetail Probe Holder (PH-1000)

Dovetail probe holder to fit a wide-range of bars and probes

PatchStar with Dovetail Probe Holder Dovetail Probe Holder

Electrode Holding Bar (EHB-500)

Electrode/probe holding bar with v groove to hold glass capillaries

Electrode holding bar for PatchStar

Magnetic Base (S-MB-3020-00)

Low-profile magnetic base to attach your PatchStar to your antivibration table or other platform

Patchstar magnetic base

Fixed Sliding Probe Carriage (PS-7750)

Sliding probe holder with a fixed angle of approach to mount stimulation bars, or headstages with mounting bar to PatchStar.

Fixed sliding probe carriage Fixed sliding probe carriage

Contact Form